
J .  Fluid Mech. (1981), V O Z .  113, p p .  469-485 

Printed in Great Britain 
469 

Planform selection by finite-amplitude thermal convection 
between poorly conducting slabs 

By M. R. E. PROCTOR 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge 

(Reoeived 26 January 1981 and in revised form 8 July 1981) 

Three-dimensional finite-amplitude thermal convection in a fluid layer is considered 
in the case where the boundaries of the layer are much poorer conductors than the 
fluid. It can be shown that if the conductive heat flux through the layer is not too 
large, the horizontal scale of motion is much greater than the layer depth. Then a 
‘shallow water theory’ approximation leads to a nonlinear evolution equation for the 
leading-order temperature perturbation, which can be analysed in terms of a vari- 
ational principle. It is proved that the preferred planform of convection is a square cell 
tesselation, as found in a rather more restricted parameter range by Busse & Riahi 
(1980), in contrast to the roll solutions that obtain for perfectly conducting boundaries. 
It is also shown that the preferred wavelength of convection increases slowly with 
amplitude. 

1. Introduction 
The mechanisms by which a convectively unstable fluid layer chooses the horizontal 

structure of the velocity field that transmits the heat across the system have been 
extensively studied, both theoretically and experimentally, in recent years. Most 
attention has been focused on the behaviour of the convection when the amplitudes 
are not very large and the flow is relatively ordered. Then not only is discussion of a 
‘ pattern ’ meaningful, but the theoretical problem is often amenable to perturbation 
theory. Most analysis has been undertaken in the idealized situation for which the 
boundaries of the fluid layer are taken to be excellent conductors of heat, on which 
the temperature is almost uniform (Schliiter, Lortz & Busse 1965; Palm 1960; Clever 
& Busse 1974; Newel1 & Whitehead 1969; for further references see the recent review 
by Busse 1978). The principal result of the calculations is that for an effectively infinite 
layer the stable form of convection is rolls (in which the velocity field is everywhere 
orthogonal to a given direction), except for a very small region around marginal 
stability where effects of temperature dependent viscosity etc. lead to subcritical 
convection with a hexagonal planform. 

In  many laboratory experiments, however, the working fluid is surrounded by a 
layer of material (often Plexiglas) which is no better a conductor of heat than the fluid 
and is often (especially for low-Prandtl-number fluids like mercury) rather worse. Then 
the condition of uniform temperature on the boundaries must be relaxed, and this 
can dramatically affect, not only the preferred horizontal length scale of convection, 
but also its planform. These considerations are not purely academic; they may be 
relevant, for example, to understanding the form of convection in the Earth’s upper 
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mantle (see, for example, Chapman, Childress & Proctor 1980). It is natural, then, to 
investigate the other ‘extreme ’ problem, that of almost insulating boundaries. 
Linearized stability theory for convection between layers that are much poorer 
conductors than the fluid (Sparrow, Goldstein & Jonsson 1964; Hurle, Jakeman & 
Pike 1967) shows that the ‘most unstable’ wavelength (the one requiring the lowest 
temperature difference to destabilize it) becomes very large as the ‘Biot number’, 
the dimensionless parameter that measures the relative conductivity of boundary to 
fluid, tends to zero. Chapman (1978, 1980) and Chapman & Proctor (1980, hereinafter 
referred to as CP) considered nonlinear convection a t  zero Biot number using a 
‘shallow water theory’ technique first used for convection problems by Childress & 
Spiegel (1981). CP considered two-dimensional (roll) solutions only, but were able to 
prove rigorously that for zero Biot number the convection selected the largest wave- 
length available to it, even though the wavelength of maximum growth rate on 
linear theory was much shorter. Busse & Riahi (1980) considered weakly nonlinear 
three-dimensional solutions a t  small Biot number, utilizing the fact that the most 
unstable wavelength is very long in this case. By means of analysis similar to that of 
Schluter et al. (1965) they showed that square convection cells are the stable planform. 
Poyet (1980) has discussed the small-Biot-number problem by using the Childress & 
Spiegel (1982) method. He concentrates on two-dimensional solutions with special 
boundary conditions, and finds interesting time-dependent behaviour. This behaviour 
does not occur in our geometry. Depassier & Spiegel (1981 a,  b )  have discussed the 
limitations on the Boussinesq approximation in the fixed-heat-flux problem, and Poyet 
& Spiegel (1982) have discussed aspects of the transition from small to large Biot 
number in the non-Boussinesq case, 

In the present paper we apply the expansion method developed in C P  to the three- 
dimensional convection problem a t  small Biot number, in the special case when the 
depth of the conducting slabs is of the same order as the depth of the fluid layer. 
The main thrust of the analysis is to determine the planform of convection that is 
actually realized, among the many permitted by linearized theory. The method 
allows the consideration of much larger amplitudes than those treated by Busse and 
Riahi. The nonlinear stability problem can be reduced to the determination of the 
minima of a certain functional that is a generalization of the one used in C P  (and waa 
originally proposed by S. Childress). It can then be shown quickly and rigorously that 
for small Biot number roll solutions are unstable over a wide range of amplitudes, and 
(after some computation) that square-cell solutions are indeed the stable ones over 
the entire range of validity of the approximation. It can also be demonstrated that 
the ‘preferred’ wavelength of convection increases slowly with amplitude. Convective 
amplitudes in the Busse & Riahi (1980) study were too small to permit any statement 
about the change in wavenumber from its ‘ most unstable ’ value. 

The structure of the paper is as follows. I n  $ 2 the problem is formulated. Linearized 
stability theory is considered in $3,  where it is shown that the most unstable wave- 
number tends to zero as the Biot number tends to zero. Section 4 develops the scaling 
for the nonlinear problem, and the linear theory of the reduced system is considered 
in $ 5 .  The nonlinear variational principle is introduced in 5 6, the main results are 
described in $ 7 and conclusions are presented in $ 8. 
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2. Formulation 
We consider a layer of Boussinesq fluid of depth 2d lying between solid poorly 

conducting slabs of depth Ad, where A is of order unity. The conductivity K~ of the 
slabs is much less than K ,  the conductivity of the fluid. Cartesian co-ordinates are 
chosen with origin a t  the mid point of the layer. Gravity g = - g2 is perpendicular to 
the boundaries; the fluid has velocity u, pressure p and kinematic viscosity v,  where 
it is supposed that Y 9 K ,  so that the Prandtl number CT = v / K  is effectively infinite 
and the effects of fluid inertia can be neglected. It will emerge later, though, fhat our 
analysis is independent of CT provided it is not too small; see 0 8. The temperature T 
a t  the top and bottom of the ‘sandwich’ is fixed so that in the absence of motion the 
temperature gradient in the fluid aT/& = - q. Thus when u = 0, 

T = To-qz, 

T = To T qd( 1 - 5-1 )  - qC-12,. 

1.1 < d, 

, respectively. (2.1) 
d < z 6 d ( l + A )  
- d  b z b -d(l+A) 

where 5 = K 1 / K  and To is a reference temperature a t  which the density is po. If the 
temperature perturbation due to any fluid motion is O(x, t )  in the fluid and &x, t )  in 
the solid, and a the coefficient of thermal expansion, the non-dimensional equations 
of motion and heat conduction are: 

in the fluid; and 
a8 - = 5 0 2 8 ,  at 

in the slabs. In  equations (2.2), (2.3) IuI is scaled with K / d ,  p with p o v K / d 2 ,  time t 
with d2/K,  lengths with d, and O , a  with qd. The dimensionless parameter R (the 
Rayleigh number) is defined by 

The velocity vanishes on the boundaries z = f 1, and the boundary conditions on the 
temperature are 

R = gapd4 /KV.  (2.4) 

B = 0, z = & ( l + A ) ,  (2.5) 

O = 8 ,  Z = & 1 ,  (2.6) 

DO = CDB, 2 = & 1, (2.7) 

where DO = ae/ax etc. As previously noted, we shall suppose that 5 is small, that 
A 9 < and that A is not so large that the depth of the slabs is comparable with the 
horizontal scale of convection. The object of the analysis to follow is to examine the 
nature of the instability that arises if R is sufficiently large. We shall make no assump- 
tions concerning the evolved velocity and temperature fields except to require that 
they be periodic in x and y, thus giving the tesselated cellular structure observed 
often in experiments. It is well known that in the absence of inertial effects there is 
no source of vertical vorticity in the fluid, which therefore decays to zero. We may 
thus represent the velocity field u in terms of the single scalar $(x, t )  by 

U = v A v A ($2). (2.8) 
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FIGURE 1. Graphs of (a)  Rmin and ( b )  a, as functions of 5 for h = 1. 

Thus u is solenoidal and 2 . V A u = 0, as required. If this representation is substituted 
into the governing equations (2.2) they may be rewritten as 

0 = R8 - V4$, 

+ V,(D$) . V, 8 - V;I $08 = - 0% 4 + V20, 

(2.9) 

(2.10) 

where V, = (a/ax, a/ay, 0). The boundary conditions on 4 a t  the top and bottom of 
the layer are 

$ = 0 $ = 0 ,  x = + l .  (2.11) 

3. Linearized stability theory 
If we ignore the nonlinear terms in (2.10) we are left with a linear system separable 

in x, y and t ,  that describes the evolution of small disturbances. It may easily be shown 
that if u, 8,8 cc est then s must be real, and so the boundary between growing and 
decaging solutions is given by s = 0. If we write $ = &z)f(x, y), 8 = O(x)f(x,y), 
8 = 8 ( z )  f (x, y) where V$f f = - a”f, the equations for steady fields become -. 

(3-1) 1 
( 0 2 -  a2) 8 = 0, 

0 = a26+(02-a2)8. 

0 = R8- (D2 - ~ 2 ) ~  6. 

Thus the critical value R = R, for linear instability is a function of <, h and a2, deter- 
mined as an eigenvalue of (3.1). Of particular interest is the behaviour of R, as a 
function of a2 when f: and h are fixed, and in particular the minimum R,in(C, A )  that 
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occurs a t  a = A ) .  Sparrow et al. (1964) studied the present problem in the limit 
A -+ 0, {A + constant, equivalent to a ‘Newton’s Law of Cooling’ boundary condition; 
here we give results for h = 1 (which is typical) and plot Rmin and a, as a function of 5 
(for a summary of the method, see the appendix). As expected, when c-+ co, 
Rmin + 1708/16 and ac -+ 3-117/2, in agreement with the classical result. [The 
factors 16 and 2 are due to our layer being of depth Zd.] For small 5, we find that 
Rmin = 45+0(5*) ,  ac = O(@) in agreement with the results for the singular case 
5 = 0 given by CP. Furthermore, it  is clear from the extremal property of Rmin that 
when R-Rmi, N @, the range of wavenumbers above the (R,,a) curve has width 
O @ ) .  [See figure 11. 

4. Scaling and derivation of the canonical equation 
The theory given above for general 5 suggests that the behaviour of the nonlinear 

solutions when y is small can be obtained by exploiting the fact that all growing 
disturbances have long horizontal scales compared with the layer depth. Thus hori- 
zontal derivatives are small, and we write 

@/ax, spy) = @/ax, a/aY), E < 1. (4.1) 

R - R, = p2.9, g = 9e4, t = T E - ~  [p, p = O( l)] (4.2) 

Guided by the results of t,he previous section, we then scale other relevant quantities 
by writing 

where we write R, = 45 for convenience.t The scalings for x, y, t and R are just those 
used by C P  for the case 5 = 0. No assumptions are made a t  this stage about the 
magnitudes of 8 , g  and 4, but we formally expand them in powers of e2; 

(4.3) 1 
e =  e,(x, Y,~,~)+~V,(X, Y , ~ , ~ ) +  ..., 

8 =  8,(X, Y,Z,7)+€282(x, Y,x,7)+ ..., 
4 = $,(X, Y ,  Z , 7 )  + “$@, Y,z, 7) + . . . . 

We then substitute (4.1)-(4.3) into (2.3), (2.9) and (2.10) and attempt to solve the 
sequence of problems that emerge. The method is fully explained in CP, where it is 
noted that it is completely analogous to ‘shallow-water theory’; the first use of the 
technique for problems in convection theory was made by Childress & Spiegel (1981) 
in their study of the instability due to  negatively geotactic swimming micro-organisms. 
Only a summary of the development is given here. 

First we treat the problem in the slabs (equation (2.3)); only the leading-order 
equation is needed here, and it is 

(4.4) 

At x = f (1  + A ) ,  I!? = 0, while at  z = & 1, DO = E~CDO,, so that 

DO, = DO, = 0 ;  DO4 = CDO0, z = f 1.  (4.5) 

f It is clear that (4.2) does not completely define E.  W0 retain the representation given since 
it is sometimes convenient to consider the effect of changing R at fixed <, and sometimes more 
illuminating to do the opposite. 
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For the fluid, a t  leading order, the temperature equation (2.10) yields 

D28, = 0 (4.6) 

(4.7) 

with the boundary condition (4.5); (4.6) is solved by 

8 0  = f ( X ,  y ,  7). 
We then continue the problem solving sequence until we find an equation that deter- 
mines f. Substitution of (4.7) into (2.9) a t  O(1) gives 

D49!+, = R, f, $o = D$o = 0, z = _+ 1, (4.8) 

and this has the solution 
$0 = -R ,P (z ) f ,  (4.9) 

where P(z )  = -&( 1 - z ~ ) ~ .  [The notation is chosen to be consistent with that of CP.] 
Then (2.10) a t  O(e2) becomes 

- R,DPI V H  f I = ( 1 + R, P) 0% f + D28,, (4.10) 

where now V, = (a /aX,  a / aY) .  This inhomogeneous boundary-value problem has a 
solution if and only if 

D28,dz = 0. 

Thus we must have 

( 1  + R,P)dx = 0; hence R, = 45, as required. L1 (4.11) 

Equation (4.10) can then be solved for 0, and the result substituted into (2.9) a t  
0(c2) to obtain 4,; on returning to  (2.1) a t  O(e4) we obtain another inhomogeneous 
equation for 8, whose solvability condition is 

(4.12) 

where the symmetry of 6 about x = 0 has been taken into account. When the appro- 
priate inhomogeneous terms are substituted into (4.12), we obtain the required 
condition on f, namely 

- af - - - Ap2vhf - Bv&f + cvfI. ( I V H f  12VIff) + (4.13) 

where A = &, B = -K4- 2 3 1  and C = IF. If the bounding planes are taken to be stress- 
free rather than rigid the equation obtained is the same as (4.13) but with different 
numerical values for the positive constants A ,  B, C (see CP). 

a7 

The equation may be reduced to canonical form by writing 

( 6 , ~ )  = (A/B) t  ( X ,  Y ) ,  T = (A2/B)7, F = (C/B)& f, P = (C/B)* 0. (4.14) 

On substitution into (4.4), (4.13) we obtain 

aF 
= yD2F, 

(4.15) 
aF aT - -p2V2F - V4F + V . ( JVF12VF) + yDFI, _ -  
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where y = BC/A2, and ( a /& 8 /87)  is written as V for simplicity. The boundary con- 
ditions on F([, y ,  x ,  T )  are 

F = 0 ,  z=l+A; P = F l ,  ~ = l .  (4.16) 

Thus we have enormously simplified the original set of partial differential equations. 
The solution appears to  depend on the three parameters p, y and A. It will emerge, 
however, that stable steady states of the system depend on y and A only through 
p = yA-1; furthermore, if we consider a sequence of experiments in which one of p 
or p is held fixed and the other varied, either parameter can be eliminated by a suitable 
co-ordinate transformation. I n  most of what follows we shall set p = 1, thus defining 

I 

6 = (R--RC)+. 

5. Linearized theory 

(4.15) equal to zero. Then for s > 0 the solutions can be written 
When the perturbations are of small amplitude, we may set the nonlinear term in 

(5.1) 
p = e”h(6, r ) ,  
P = P sh [(sly)* (1 + h - z)]/sh [ ( s ly)$  A] 

where h([ ,  q) satisfies V2h = - a2h. Then 

BPIl = - eST(s/y)a coth [ (s ly)*  A ] .  h ( 5 . 2 )  

(5.3) 

where ,8 = yh-l and where G(x) = x coth x ;  analogous relations hold for s c 0. Since 
s is real, we may investigate the transition from stability to instability by setting 
s = 0. Then G(z) = 1 and the critical value of p, pc, is given by 

p: = a2 + p p  

R m i n  = R, + 2e2p* 

(5.4) 

( 5 . 5 )  

SO that the minimum Rayleigh number R m i n  = R, + e2p2,i, is 

and the critical wavenumber a = ac = pi. 
These results agree with the asymptotic results obtained from the full linearized 

system. Thus when p2 is just greater than 2pi the wavenumber of any growing mode 
is close to ac. But if ,u2 is rather greater than this value then a whole band of modes 
are unstable, and the one that might be expected to appear in an experiment is that 
which has the maximum growth rate. Now in the classical problem (6 -+ m) these 
modes have wavenumbers similar to  a,. I n  the poorly conducting case, however, the 
position is quite different. We note that s + p G ( A ( s / y ) ~ )  is a monotonically increasing 
function of s for s > 0. Thus the maximum growth rate s,,, occurs when the terms in 
a in (5.3) are greatest, i.e. when 

a = amax = p/&?. (5 .6 )  

Thus a,,, increases withp and is independent of p. Clearly there is no relation between 
ac and a,,, in general, and for small p, amaxlac can be very large. When the amplitude 
of the perturbation is finite, modes of different wavenumber interact and the realized 

16 F L M  113 
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steady states are only a very small subset of the modes permitted by the linearized 
theory. It was shown in CP that when 5 = 0 the mode of maximum growth rate is 
not stable at  finite amplitude, and that the stability of any mode is lost always to one 
of longer horizontal scale. Thus the dominant scale of convection increases with time 
until the largest scale available to the system is reached. When 6 + 0 such an indefinite 
lengthening of scales cannot persist, since there is a small wavenumber cut-off. How- 
ever, we can expect that, when /3 < l ,  p = O( l),  the ' most stable mode ' has wavelength 
much greater than the mode of maximum growth rate. Such questions of stability 
are virtually intractable for most nonlinear problems, and the difficulties are com- 
pounded in the case of convection in an infinite layer since solutions exist with many 
different patterns (rolls, square cells, hexagonal cells, etc.). A recent review (Busse 
1978) describes the many ways in which degeneracy can be resolved by investigating 
the stability properties of the solutions; rigorous results have, however, been almost 
entirely confined to weakly nonlinear problems, where perturbation theory in powers 
of the amplitude can be utilized (Schluter et al. 1965). In  the present case the question 
of stability can be reduced to the discussion of the extrema of a certain functional, and 
it is this that we consider next. 

6. The nonlinear variational principle 

understood by considering the functional 
It has been suggested by S. Childress that equations of the type of (4.15) can be 

V [ F ,  P ]  = ( &]VFI4 + +/V2FI2 - $IVPl2 + 
dz) 2 1  

where angle brackets denote an average over the fluid layer and we have set ,u = 1. 
It may quickly be established, by methods analogous to those of CP in the case y = 0, 
that "=-((q+l1 i+a  (z) aP 2 dz)  

dT 
so that V decreases with time in any evolution of the system. Furthermore, the Euler- 
Lagrange equation for the stationary values of V with respect to F and P at fixed 
time is precisely the time-independent version of (4.15). It is therefore clear that the 
stable steady solutions of (4.15) are those that correspond to local minima of V .  
For a steady solution, F = P(l -h-l(z- l)), so = - F / h  and 

Thus the Newton's law of cooling model holds even for finite h in the steady case. 
It can easily be shown that, when p = 1, the minimum of V is less than zero only when 
/3 < #, and this is the point at  which the static solution F = 0 loses stability. When F 
represents a stationary solution of (4. lq ,  the following relation holds: 

0 = ( (VF(2-  ( V 2 F ( 2  - (VFI4-PF2).  (6.3) 

V = -&{]VF(Q) .  (6.4) 

Then substitution into (6 .1)  shows that in this case 
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Furthermore, use of the Schwarz inequality in (6.1) reveals that 

V 2 &(lVF[4)-$(lVF/2) 
2 &( lVF12)2 - +( IVF( ') 
2 -1 4' 
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We shall see that this extreme lower bound is in fact approached as /3 + 0. Since V 
is bounded below and continually decreases, the only asymptotic states at  large times 
are steady ones. 

There have been many attempts to understand the nature and heat-transport 
properties of convection in terms of a variational principle. The pioneering speculations 
of W. V. R. Malkus, and their interpretation by Howard (1963) centred on the idea 
that the convection would 'want ' to maximize the heat transported across the layer 
or (which is equivalent) to maximize its thermal or viscous dissipation. Such a prin- 
ciple appears to have no general validity for convection (though, significantly, it  gives 
a much more accurate estimate when the Prandtl number P is effectively infinite). 
However, the present simplified system does obey such a principle: it maximizes 
(lVF14) ! This quartic quantity is not directly related to the heat transport, although 
it can be related to quadratic quantities representing heat transport and viscous loss. 
Although it is not at  all clear that there is a unique minimum of V ,  we seek in this 
study its absolute minimum, since the solution corresponding to this value is stable 
to all sufficiently small disturbances. 

Before investigating the properties of V ,  we may prove quite simply that all two- 
dimensional steady solutions of (4.11) are unstable. Let F, be a steady solution (not 
necessarily two-dimensional) of (4.15); then F, gives a stationary value V, of V .  Thus 
if F is perturbed slightly to F, +6F, (6.1) yields, 

where 
V = q++'V+OO(ISFl3), 

P V  = +(2(VF0. V(SF))2+ IVq12 IV(6F)12+ IV2(6F)12+B16F[2- IV(6F)[2). (6.6) 

Then the question of stability is decided by the sign of the minimum of S2V/(1SF12) 
as a functional of 6F. If the minimum is non-negative, F, is stable, while if it is negative, 
F, is unstable. 

Now suppose that Fo = Fob((), representing a solution in the form of rolls. Then if 
we evaluate S2 V for SF = CF,(r) where Cis a constant, we find that, since VF, . V6F = 0, 

(6.7 1 

(6.8) 

and since (FA2)>" is less than (FA4) we can see that S2V < 0 for this value of SF. Thus 
the minimum of 62 V is also negative and roll solutions are unstable to three-dimensidnal 
perturbations. This result confirms and generalises the results of Busse & Riahi (1980) 
who found that when 6 = & -p  < 1 (so that the amplitude of convection is very small), 
square cells were the stable ones according to the theory of Schluter et al. (1965). In 
the next section we shall see how their results emerge naturally from a consideration 
of V for small 6, and then extend the calculation numerically for 6 = O( 1).  

6'V = +C2[( lFhl2}>" -I- (Fg2) +/3(3:> - (FA')], 

4 3 7 4 4 )  + q q 2 )  +- P(F;) - (F;') = o 

where the primes denote derivatives with respect to the argument. But from (6.3) 

16-2 
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7. Results 

If we write 6 = 4 -p, p = 1 and F = 66G then (4.15) becomes, for steady solutions, 

7.1. Small-amplitude convection 

0 = $G+V4G+V2G-6G-SV. (IVG12VG), (7.1) 

and we may seek a solution by expanding in powers of 8; 

G = Go+6Gl+ ... . 

0 = &Go + V4G0 + V2Go, 
At leading order in 6, 

and this is solved by any function satisfying V2Go = - &Go. At the next order in 6, 

0 = $Gl+V4G1+V2G1-Go-V. (IVGo12VGo). (7.4) 

Now (7.3) is a self-adjoint system, and so a necessary and sufficient condition for a 
bounded solution of (7.4) is that the inhomogeneous term be orthogonal to all solutions 
of (7.3). Thus for any such solution, d,  say 

(OG,) = ( V d .  VGoIVGo12), 
and in particular 

( G 3  = (lvG014). 

Thus if we substitute in a solution for Go (determined up to a constant by (7.3)), the 
amplitude can be found from (7.6) and thus the value of V = - fa2( lVGo14) determined. 
Solutions with rectangular planform can be written in the form 

then 

and 

Go = AcosaEcos/3q, where c c 2 + P 2  = *; (7.7) 

( G 3  = &A2, 

A4 
(IVGo14) = z[$+4(a2-P2)2] .  (7.8) 

so that the minimum of V occurs for square cells, yielding V = -QP. A similar cal- 
culation for roll solutions gives V = - $62, and it can be shown that hexagonal modes 
proportional to the eigenfunctions discovered by Christopherson ( 1940) also yield 
V = - @  2. Thus for small &square cells are indeed stable according to the ‘ V criterion ’, 
at least when 6 is small. 

7.2. ~umerica2 solutions for 6 = O(1) 

When P is not close to 2 perturbation methods do not suffice, and the minimization 
problem for V must be solved numerically. The importance of the nonlinear work is 
that for finite-amplitude motions linearized theory permits a band of growing modes, 
and so a whole range of steady, finite-amplitude periodic solutions are permitted. 
Our minimization of V must therefore be with respect to the period of the solution 
as well as its functional form, and the result of the analysis is a value of the period for 
which the value of V is least, for a given planform. We then take this period as the 
‘ stable ’ one, and suggest that it is the one most likely to occur when a series of experi- 
ments is conducted. No proofs are available, of course, that this ‘most stable’ period 
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is the only stable one: experience from the perfectly conducting problem suggests 
that there are a range of stable periods. It does, however, give the first deductive 
method of finding the predominant wavelength. 

To carry out the minimization, we represented F by its values Fi at the nodes of a 
Cartesian mesh, and evaluated the functional (6.1) using finite-difference methods. V 
was then minimized using a package from the NAG library. The periods in the X 
(and, for rectangular and hexagonal planforms, the Y )  directions were also taken as 
independent variables. Figure 2 shows the domains and boundary conditions investi- 
gated. Figure 3 shows the results of the computation for rolls and square cells for 
various ,9 between 0 and 4. It can be seen that the value of V for square cells is less 
than for roll solutions, as already shown. V decreases as p decreases and, as expected, 
tends to - 4 for /3 --f 0. An attempt was made to calculate V for hexagonal modes by 
the same method; but the boundary conditions used in the minimal rectangle, though 
permitting a hexagonal planform, also permitted other tesselations. In every case 
tried, the minimum found by the numerical routine was not of hexagonal type. Since 
the value of V was greater (for each p) than for either roll or square solutions, it is 
clear that hexagons are not a stable form of convection in this case. Figure 4 shows 
contour levels (for square cells) for p = 0.001 for two values of a. There is a tendency 
for IVFI to approach unity when the amplitude is large, as predicted above. 

In  figure 5 we show the ‘preferred wavelength’ ap of square-cell convection (curve 
(a ) )  , plotted in terms of a, this value being deJined as that which emerges from the mini- 
mization process as a function of p, compared with three other important wavelengths. 
These are ( b )  amax, the mode of maximum growth rate, appearing as a horizontal line 
since it is independent of p; (c) the minimum a (maximum wavelength) at  which 
convection can take place, calculated from (5.4) with p = 1;  and ( d )  a, = pi, the 
wavelength at  which convection first occurs as R is increased. It will be seen that the 
preferred wavenumber ap is very close to a, except for small values of p. Numerical 
computations suggest that as p -+ 0, ap N p i ;  figure 6 shows ap/3-i as a function of /3. 
The 6 exponent is supported by the asymptotic theory for p -+ 0 given in appendix B. 
Thus for small ,!? (or large p ,  which as we have noted is completely equivalent) the 
preferred wavelength of convection is larger than stability theory might suggest. 

It is difficult to relate this phenomenon of cell widening to  any process of instability, 
since no direct time integration of the governing equations has yet been carried out. 
Krishnamurti ( 1  970), studying rolls between conducting boundaries, found an increase 
in their width due primarily to ‘dislocations’ in the roll structure which tended to 
combine two rolls into one. At high Prandtl numbers and higher Rayleigh numbers 
‘spoke-pattern’ convection occurs (see, for example, Busse 1978) and this leads to 
pronounced hysteresis in the observed wavenumber, with much lower wavenumbers 
being obtained if the Rayleigh number is decreased than vice versa. At low Prandtl 
numbers, by contrast, it is the skew-varicose instability that causes a decrease in 
wavenumber (Clever & Busse 1978). None of these routes seems applicable in the 
present problem. In CP it was shown that roll solutions can lose stability to larger 
rolls through a completely two-dimensional instability, so perhaps in the present case 
lengthening can oecur via square cell modes. It is likely, however, that there is a 
range of values of L in a neighbourhood of L, for which square cells of width L are 
stable to small disturbances. 

We can see more clearly the way the wavelength changes with amplitude if we 
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f = f Y Y = o  7 =fxx, = 0 f = f,, = 0 

(C) 

FIUURE 2. Domains of integration and boundary conditions appropriate to 
(a) rolls, (b)  rectangular cells and (c) hexagonal cells. 

P 

I 0.05 0.10 0.1 5 0.20 0.25 

/,/' Squares 

FIGURE 3. Graphs of the minimum of V as a function of for roll and square planforms. 
There are no solutions for / > &. 

write the results in terms of the physical variables R and y. Ignoring multiplication 
by constants of order unity, we have 

c2 = R - R,, L = ~ / E E ,  /3 = [ E ~ E - ~ .  (7.10) 

Thus L, = l /sa,  = I/@ = [-f, independent of R (as is to be expected); while 
Lp = l/eap = I/& = [-k* = C-i(R - R$, a t  least when (R- R,) 2 c4. Thus for 
fixed y ,  Lp increases slowly with R as predicted. Although our problem and 
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(a) 

FIGURE 4. Contour levels for square cells with /3 = 0.001 at (a) a = a,, (b) a = amh, 
the smallest wavenumber for convection to be possible. 

I 
0 0.05 0.10 0.1 5 0.20 0.25 

P 
FIGURE 5. (a) The preferred wavenumber a, compared with (b) am,, the scale of maximum 
linear growth rate, (c) amln, the smallest wavenumber for convection, and (d )  a, = pf, the 
‘most unstable’ wavenumber. 

Krishnamurti’s are not directly comparable, the general picture of the dependence 
of L, on R is very similar to Krishnamurti’s figure 9. 

Finally, it must be emphasized that all minimization techniques are local in nature, 
and that there is never a guarantee of a unique solution. We believe that we have 
isolated the minima corresponding to roll and rectangular (i.e. in this case square) 
planforms. It is quite possible that from general initial conditions non-regular 
tesselations could result, and this is particularly likely if side walls are near enough 
to influence the pattern significantly. The effect of distant side walls can be discussed 
using a WKB-like method as discussed by Segel (1969), but complicated planforms 
of the type observed by experimenters (see for example Busse 1978) probably have 
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FIGURE 6. Plot of asp-% z ap/a, as R function of ,&. 

a local domain of attraction. Current computing power allows a numerical simulation 
of a ‘box’ containing many wavelengths, and an investigation of this type is currently 
in progress. 

8. Conclusion 
In  previous sections we have shown that thermal convection between poorly 

conducting boundaries can be investigated by ‘shallow water theory’ methods of the 
type pioneered for convection problems by Childress & Spiegel (1981). The method 
yields an evolution equation for the temperature perturbation in the two horizontal 
co-ordinates and time, and this equation in turn can be understood in terms of a 
variational principle. It can then be shown that cells of square planform are the most 
stable among regular tesselated patterns, even when the amplitude of the temperature 
perturbatiun is O( 1)  so that the convection is fully nonlinear. This result confirms and 
extendB the results of Busse & Riahi (1980) who determined the stability properties 
very close to the critical level of the Rayleigh number for the onset of convection. 
The calculations yield for the first time a prediction based on analysis that the pre- 
ferred wavelength of convection increases slowly with amplitude. 

There has been no mention thus far of the possible effect of finite Prandtl number u 
on the results. Although the analysis is formally valid only for infinite u, it can be 
shown, by methods analogous to that of CP, that even when = O( 1)  it never enters 
the calculations to the order that we have taken them. The effect is due to the sym- 
metry between the top and bottom boundaries. As noted in CP, if the velocity boundary 
conditions are different at x = k 1, an extra term appears in the evolution equation 
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that does depend on cr, but since this new equation cannot be discussed simply in 
terms of a variational principle we do not consider it here. 

When R - R, is of order unity, the analysis ceases to be accurate, and one might 
then expect the dominant horizontal scales to be of the order of the layer depth. 
However, recent computations of the full nonlinear system with 5 = 0 and no y- 
dependence (Hewitt, McKenzie & Weiss 1980) show that long wavelength motions 
can persist well into the nonlinear regime, even when the thermal variation takes 
place in thin boundary layers. In that paper and in Chapman et al. (1980) it is noted 
that calculations for small Biot number have an important bearing on the study of 
convection in the Earth’s upper mantle. New information on the planform of mantle 
convection is also very suggestive of a ‘square cell’ structure (McKenzie et al. 1980). 
Of course, the Biot number in the earth is not very small: and one of the most enter- 
taining and significant problems raised by the present work is that of determining the 
value of y at which the change-over between roll and square-cell solutions takes 
place. 

I am indebted to S. Childress who suggested the ‘shallow water theory’ method, to 
D. 0. Gough and M. J. D. Powell for advice on numerical methods, and to C. J. 
Chapman for many illuminating discussions. 

Appendix A. Solution of the linear eigenvalue problem (3.1) 
It may quickly be established that the solution of (3 . la ) ,  namely 

h sinha(l+h-z) 
sinh ha 

B ( z )  = @(I) 

and similarly for the lower slab, leads to the boundary condition on 8: 
D8(+I, = T [acotha8(,,. (A 21 

The eigenvalue Ro(a, 6) can then be calculated as the minimum of the homogeneous 
functional 

(8[(a2-D2)8])([(D2-a2) $I2) R, = 
a2(8$)2 

Rmin was found by representing 8 and $ as polynomials in 22, constraining some of 
the coefficients to satisfy (A 2) and the boundary conditions (2.11) on $, and finding 
the minimum as a function of the remaining coefficients and a,  using a standard mini- 
mization routine from the NAG subroutine library. 

Appendix B. The square-cell tesselation for small p, and the minimum 
value of V 

We consider steady solutions of equation (4.15) with ,u = 1, which can be written 

0 = V 4 F  + V 2 F  + /3F - V . ( IVP12VF), (B 1)  

in a square cell of side 1, for /? < 1. If we write P = Fo+/3Fl, substitute into (B 1)  
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and expand in powers of p, we obtain at leading order 

0 = V4Fo+V2Fo-V. (IVFo12VFo), (B 2a) 
0 = V4Fl+VzFl-2V.((VF,.VFl).VFo)-V. ((VFoF,(2VFl)+Fo, (B 2b) 

so that Fo is the solution of the ‘perfect’ problem. For steady solutions the functional 
V can be written 

V = - &( IVF14) = - ~ ( ~ V F o ~ 4 )  - p( IVFo12VFo . VFl) + . . ., (B 3) 

and if (B 2a) is multiplied by Fl, (B 2b) by F,, the resulting equations averaged and 
combined to eliminate terms bilinear in Fo and Fl, we can rewrite (B 3) as 

V = -a(l VFo14)+~P(F~)  -t.... (B 4) 

We may thus consider only (B 2a) from now on. Suppose that the origin ( 5 , ~ )  = (0,O) 
is at  the centre of the cell, and that P = 0 on the boundaries, E = f 41; 7 = f &Z. Then 
a solution that is continuous everywhere, satisfies the equation everywhere except at  
6 = f 1, and satisfies all the boundary conditions is 

Fo = &+l5-T l -8 l5+r l .  (B 5 )  

Examination of the numerical solutions reveals that Fo differs from this form only in 
transition regions of thickness O(1) near 5 = +q. lVFl is of order unity throughout, 
and is almost equal to 1 almost everywhere away from these regions. Thus we might 
expect, and computations confirm, that for large 1 

(pay) N l-A/1+0(1-2) (B 6) 

and the constant A is about 4. In  calculating the second term in (B 4) the solution 
(B 5 )  may be used at  leading order: the integration is elementary, and leads to the 

Thus the minimum value of V is about - & + 0.52~3) (P < 1) and occurs for 1 N 2.9P-i. 
These values agree well with the computations. 
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